

Chapter 7

Quantum Theory and Atomic Structure

Quantum Theory and Atomic Structure

7.1 The Nature of Light

7.2 Atomic Spectra

7.3 The Wave-Particle Duality of Matter and Energy
7.4 The Quantum-Mechanical Model of the Atom

The Wave Nature of Light

Visible light is a type of electromagnetic radiation.
The wave properties of electromagnetic radiation are described by three variables:

- frequency (v), cycles per second
- wavelength (λ), the distance a wave travels in one cycle
- amplitude, the height of a wave crest or depth of a trough.

The speed of light is a constant:

$$
c=v \times \lambda
$$

$=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ in a vacuum

Figure 7.1 The reciprocal relationship of frequency and wavelength.

7-5

Figure 7.2 Differing amplitude (brightness, or intensity) of a wave.

7-6

Figure 7.3 Regions of the electromagnetic spectrum.

Sample Problem 7.1 Interconverting Wavelength and Frequency

PROBLEM: A dental hygienist uses x-rays ($\lambda=1.00 \AA$) to take a series of dental radiographs while the patient listens to a radio station ($\lambda=325 \mathrm{~cm}$) and looks out the window at the blue sky ($\lambda=$ 473 nm). What is the frequency (in s${ }^{-1}$) of the electromagnetic radiation from each source? (Assume that the radiation travels at the speed of light, $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$.)
PLAN: Use the equation $c=v \lambda$ to convert wavelength to frequency. Wavelengths need to be in meters because c has units of m / s.

wavelength in units given

use conversion factors
$1 \AA=10^{-10} \mathrm{~m}$
wavelength in m

$$
v=\frac{c}{\lambda}
$$

frequency (s^{-1} or Hz)

Sample Problem 7.1

SOLUTION:

For the x-rays: $\quad \lambda=1.00 \AA \times \frac{10^{-10} \mathrm{~m}}{1 \AA}=1.00 \times 10^{-10} \mathrm{~m}$

$$
v=\frac{c}{\lambda}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{1.00 \times 10^{-10} \mathrm{~m}}=3.00 \times 10^{18} \mathrm{~s}^{-1}
$$

For the radio signal: $\quad v=\frac{c}{\lambda}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{325 \mathrm{~cm} \times \frac{10^{-2} \mathrm{~m}}{1 \mathrm{~cm}}} \quad=9.23 \times 10^{7} \mathrm{~s}^{-1}$

For the blue sky: $\quad v=\frac{c}{\lambda}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{473 \mathrm{~nm} \times \frac{10^{-9} \mathrm{~m}}{1 \mathrm{~cm}}} \quad=6.34 \times 10^{14} \mathrm{~s}^{-1}$

7-9

Figure 7.4 Different behaviors of waves and particles.

Figure 7.5 Formation of a diffraction pattern.

7-11

Energy and frequency

A solid object emits visible light when it is heated to about 1000 K . This is called blackbody radiation.

The color (and the intensity) of the light changes as the temperature changes. Color is related to wavelength and frequency, while temperature is related to energy.

Energy is therefore related to frequency and wavelength:

$$
E=n h v
$$

$E=$ energy
n is a positive integer h is Planck's constant

The Quantum Theory of Energy

Any object (including atoms) can emit or absorb only certain quantities of energy.

Energy is quantized; it occurs in fixed quantities, rather than being continuous. Each fixed quantity of energy is called a quantum.

An atom changes its energy state by emitting or absorbing one or more quanta of energy.
$\Delta E=n h \nu$ where n can only be a whole number.

Figure 7.6 The photoelectric effect.

Sample Problem 7.2 Calculating the Energy of Radiation from Its Wavelength

PROBLEM: A cook uses a microwave oven to heat a meal. The wavelength of the radiation is 1.20 cm . What is the energy of one photon of this microwave radiation?

PLAN: We know λ in cm , so we convert to m and find the frequency using the speed of light. We then find the energy of one photon using $E=h v$.

SOLUTION:

$E=h v=\frac{h c}{\lambda}=\frac{\left.\left(6.626 \times 10^{-34}\right) \mathrm{J} \cdot \mathrm{s}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{(1.20 \mathrm{~cm})\left(\frac{10^{-2} \mathrm{~m}}{1 \mathrm{~cm}}\right)}=1.66 \times 10^{-23} \mathrm{~J}$

Figure 7.7A The line spectrum of hydrogen.

Figure 7.7B \quad The line spectra of Hg and Sr .

7-17

Figure 7.8 Three series of spectral lines of atomic hydrogen.

Rydberg equation $\frac{1}{\lambda}=R\left(\frac{1}{n_{1}{ }^{2}}-\frac{1}{n_{2}{ }^{2}}\right)$
R is the Rydberg constant $=1.096776 \times 10^{7} \mathrm{~m}^{-1}$
for the visible series, $n_{1}=2$ and $n_{2}=3,4,5, \ldots$

The Bohr Model of the Hydrogen Atom

Bohr's atomic model postulated the following:

- The H atom has only certain energy levels, which Bohr called stationary states.
- Each state is associated with a fixed circular orbit of the electron around the nucleus.
- The higher the energy level, the farther the orbit is from the nucleus.
- When the H electron is in the first orbit, the atom is in its lowest energy state, called the ground state.

7-19

- The atom does not radiate energy while in one of its stationary states.
- The atom changes to another stationary state only by absorbing or emitting a photon.
- The energy of the photon ($h v$) equals the difference between the energies of the two energy states.
- When the E electron is in any orbit higher than $n=1$, the atom is in an excited state.

Figure 7.9 A quantum "staircase" as an analogy for atomic energy levels.

7-21

Figure 7.10 The Bohr explanation of three series of spectral lines emitted by the H atom.

7-22

A tabletop analogy for the H atom's energy.

$$
\Delta E=E_{\text {final }}-E_{\text {initial }}=-2.18 \times 10^{-18} \mathrm{~J}\left(\frac{1}{n_{\text {tinal }}^{2}}-\frac{1}{n_{\text {initial }}^{2}}\right)
$$

PROBLEM: A hydrogen atom absorbs a photon of UV light (see Figure 7.10) and its electron enters the $n=4$ energy level. Calculate (a) the change in energy of the atom and (b) the wavelength (in nm) of the photon.

PLAN: (a) The H atom absorbs energy, so $E_{\text {final }}>E_{\text {initial }}$. We are given $n_{\text {final }}=4$, and Figure 7.10 shows that $n_{\text {initial }}=1$ because a UV photon is absorbed. We apply Equation 7.4 to find ΔE.
(b) Once we know ΔE, we find frequency and wavelength.

Sample Problem 7.3

SOLUTION:
(a) $\quad \Delta E=-2.18 \times 10^{-18} \mathrm{~J}\left(\frac{1}{n_{\text {final }}^{2}}-\frac{1}{n_{\text {initial }}^{2}}\right)=-2.18 \times 10^{-18} \mathrm{~J}\left(\frac{1}{4^{2}}-\frac{1}{1^{2}}\right)$
$=-2.18 \times 10^{-18} \mathrm{~J}\left(\frac{1}{16}-\frac{1}{4}\right)=2.04 \times 10^{-18} \mathrm{~J}$
(b) $\lambda=\frac{h c}{\Delta E}=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)}{2.04 \times 10^{-18} \mathrm{~J}}=9.74 \times 10^{-8} \mathrm{~m}$

$$
9.74 \times 10^{-8} \mathrm{~m} \times \frac{1 \mathrm{~nm}}{10^{-9} \mathrm{~m}}=97.4 \mathrm{~nm}
$$

7-25

Figure 7.11 Measuring chlorophyll a concentration in leaf extract.

The Wave-Particle Duality of Matter and Energy

Matter and Energy are alternate forms of the same entity.

$$
E=m c^{2}
$$

All matter exhibits properties of both particles and waves. Electrons have wave-like motion and therefore have only certain allowable frequencies and energies.

Matter behaves as though it moves in a wave, and the de Broglie wavelength for any particle is given by:

$$
\lambda=\frac{h}{m u} \quad \begin{array}{ll}
m=\text { mass } \\
u=\text { speed in } \mathrm{m} / \mathrm{s}
\end{array}
$$

Figure $7.12 \quad$ Wave motion in restricted systems.

Table 7.1 The de Broglie Wavelengths of Several Objects

Substance	Mass (\mathbf{g})	Speed $(\mathrm{m} / \mathbf{s})$	$\lambda(\mathbf{m})$
slow electron	9×10^{-28}	1.0	7×10^{-4}
fast electron	9×10^{-28}	5.9×10^{6}	1×10^{-1}
alpha particle	6.6×10^{-24}	1.5×10^{7}	7×10^{-1}
one-gram mass	1.0	0.01	7×10^{-29}
baseball	142	25.0	2×10^{-34}
Earth	6.0×10^{27}	3.0×10^{4}	4×10^{-63}

Sample Problem 7.4 Calculating the de Broglie Wavelength of an Electron

PROBLEM: Find the de Broglie wavelength of an electron with a speed of $1.00 \times 10^{6} \mathrm{~m} / \mathrm{s}$ (electron mass $=9.11 \times 10^{-31} \mathrm{~kg}$; $\left.h=6.626 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}\right)$.

PLAN: We know the speed and mass of the electron, so we substitute these into Equation 7.5 to find λ.

SOLUTION: $\lambda=\frac{h}{m u}$

$$
\lambda=\frac{6.626 \times 10^{-34} \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}}{9.11 \times 10^{-31} \mathrm{~kg} \times 1.00 \times 10^{6} \mathrm{~m} / \mathrm{s}} \quad=7.27 \times 10^{-10} \mathrm{~m}
$$

Figure 7.13 Diffraction patterns of aluminum with x-rays and electrons.

x-ray diffraction of aluminum foil

electron diffraction of aluminum foil

7-31

Figure 7.14
Major observations and theories leading from classical theory to quantum theory

Since matter is discontinuous and particulate, perhaps energy is discontinuous and particulate.	
Observation Theory	
Blackbody radiation \longrightarrow Planck:Energy is quantized; only certain values allowed	
Atomic line spectra \longrightarrow Bohr:Energy of atoms is quantized; photon emitted when electron changes orbit.	

Figure 7.14 continued

	Since energy is wavelike, perhaps matter is wavelike.
Observation Davisson/Germer: Electron beam is diffracted by metal crystal	Theory deBroglie: All matter travels in waves; energy of atom is quantized due to wave motion of electrons
	Since matter has mass, perhaps energy has mass
Observation Theory	
Compton: Photon's wavelength increases (momentum decreases) after colliding with electron	Einstein/deBroglie: Mass and energy are equivalent; particles have wavelength and photons have momentum.
	QUANTUM THEORY Energy and Matter particulate, massive, wavelike

Heisenberg's Uncertainty Principle

Heisenberg's Uncertainty Principle states that it is not possible to know both the position and momentum of a moving particle at the same time.

$$
\Delta \boldsymbol{x} \cdot \boldsymbol{m} \Delta \boldsymbol{u} \geq \frac{\boldsymbol{h}}{4 \pi} \quad \begin{aligned}
& x=\text { position } \\
& u=\text { speed }
\end{aligned}
$$

The more accurately we know the speed, the less accurately we know the position, and vice versa.

The Quantum-Mechanical Model of the Atom

The matter-wave of the electron occupies the space near the nucleus and is continuously influenced by it.

The Schrödinger wave equation allows us to solve for the energy states associated with a particular atomic orbital.

The square of the wave function gives the probability density, a measure of the probability of finding an electron of a particular energy in a particular region of the atom.

Figure 7.15
Electron probability density in the ground-state H atom.

7-36

Quantum Numbers and Atomic Orbitals

An atomic orbital is specified by three quantum numbers.
The principal quantum number (\boldsymbol{n}) is a positive integer. The value of n indicates the relative size of the orbital and therefore its relative distance from the nucleus.

The angular momentum quantum number (l) is an integer from 0 to ($n-1$).
The value of l indicates the shape of the orbital.

The magnetic quantum number $\left(\boldsymbol{m}_{l}\right)$ is an integer with values from $-l$ to $+l$
The value of m_{l} indicates the spatial orientation of the orbital.

Table 7.2 The Hierarchy of Quantum Numbers for Atomic Orbitals

Sample Problem 7.5 Determining Quantum Numbers for an Energy Level

PROBLEM: What values of the angular momentum (l) and magnetic $\left(m_{l}\right)$ quantum numbers are allowed for a principal quantum number (n) of 3 ? How many orbitals are allowed for $n=3$?

PLAN: Values of l are determined from the value for n, since l can take values from 0 to ($n-1$). The values of m_{l} then follow from the values of l.

SOLUTION: \quad For $n=3$, allowed values of l are $=0,1$, and 2

$$
\begin{array}{|l|}
\hline \text { For } l=0 \quad m_{l}=0 \quad \text { For } l=1 m_{l}=-1,0, \text { or }+1 \\
\hline
\end{array}
$$

For $l=2 m_{l}=-2,-1,0,+1$, or +2
There are $9 m_{l}$ values and therefore 9 orbitals with $\boldsymbol{n}=3$.

Sample Problem 7.6 Determining Sublevel Names and Orbital Quantum Numbers
PROBLEM: Give the name, magnetic quantum numbers, and number of orbitals for each sublevel with the following quantum numbers:
(a) $n=3, l=2$
(b) $n=2, l=0$
(c) $n=5, l=1$
(d) $n=4, l=3$

PLAN: Combine the n value and l designation to name the sublevel. Knowing l, we can find m_{l} and the number of orbitals.

SOLUTION:

	n	l	sublevel name	possible m_{l} values \# of orbitals	
(a)	3	2	$3 d$	$-2,-1,0,1,2$	5
(b)	2	0	$2 s$	0	1
(c)	5	1	$5 p$	$-1,0,1$	3
(d)	4	3	$4 f$	$-3,-2,-1,0,1,2,3$	7
(0					

Sample Problem 7.7 Identifying Incorrect Quantum Numbers

PROBLEM: What is wrong with each of the following quantum numbers designations and/or sublevel names?

	n	l	m_{l}	Name
(a)	1	1	0	$1 p$
(b)	4	3	+1	$4 d$
(c)	3	1	-2	$3 p$

SOLUTION:

(a) A sublevel with $n=1$ can only have $l=0$, not $l=1$. The only possible sublevel name is 1 s .
(b) A sublevel with $l=3$ is an f sublevel, to a d sublevel. The name should be $4 f$.
(c) A sublevel with $l=1$ can only have m_{l} values of $-1,0$, or +1 , not -2 .

Figure 7.16
The $1 s, 2 s$, and $3 s$ orbitals.

$7-42$

Figure 7.17 The $2 p$ orbitals.

7-43

Figure 7.18 The $3 d$ orbitals.

B Cross section of electron cloud depiction

D Stylized probability contour

E

Figure 7.18

F

G

H

I The five d orbitals

Figure $7.19 \quad$ The $4 f_{\mathrm{xyz}}$ orbital, one of the seven $4 f$ orbitals.

Figure 7.20 Energy levels of the H atom.

